One-Pot Synthesis of VOHPO₄·0.5H₂O with High Growth of the (001) Plane: An **Important Catalyst Precursor of (VO)**₂**P**₂**O**₇

Noritaka Mizuno,* Hiroshi Hatayama, and Makoto Misono

> Department of Applied Chemistry, Graduate School of Engineering The University of Tokyo Hongo, Bunkyo-ku, Tokyo 113, Japan

Received July 17, 1997 Revised Manuscript Received October 2, 1997

VOHPO₄·0.5H₂O is a good catalyst precursor of $(VO)_2P_2O_7$, which is an active phase or active component for the industrialized oxidation of *n*-butane into maleic anhydride.^{1–20} In addition, the (100) plane of $(VO)_2P_2O_7$, which is an active plane for the selective oxidation,^{2,3,7,8,11,13} originates from the (001) plane of VO-HPO₄·0.5H₂O.^{8,21,22} Therefore, the easy synthesis of VOHPO₄ \cdot 0.5H₂O with a high growth of the (001) plane is interesting from the standpoint of catalyst preparation. $VOHPO_4 \cdot 0.5H_2O$ is also a catalyst precursor of $(NH_4)_2[(VO)_3(P_2O_7)_2]$ active for ammoxidation.^{23–25}

To date, four methods have been reported for the preparation of VOHPO₄ \cdot 0.5H₂O: (1) the reduction of V₂O₅ with alcohols followed by reaction with H₃- PO_{4} , 1-4,8,12,14-16,21,22,26-28 (2) the reaction of a mixture of V_2O_5 and H_3PO_4 with NH_2OH ·HCl or oxalic acid

- Hodnett, B. K. *Catal. Rev. Sci. Eng.* **1985**, *27*, 373.
 Centi, G.; Trifiro, F.; Ebner, J. R.; Franchetti, V. M. *Chem. Rev.* 1988. 88, 55.
- (3) Bordes, E. *Catal. Today* **1987**, *1*, 499.
- (4) Hutchings, G. J. Appl. Catal. 1991, 72, 1.
- (5) Shimoda, T.; Okuhara, T.; Misono, M. Bull. Chem. Soc. Jpn. 1985. 58. 2163.
- Moser, T. P.; Schrader, G. L. J. Catal. 1985, 92, 216. (6)
- Busca, G.; Cavani, F.; Centi, G.; Trifiro, F. J. Catal. 1986, 99, (7) 400.
- (8) Horowitz, H. S.; Blackstone, C. M.; Sleight, A. W.; Teufer, G. Appl. Catal. 1988, 38, 193.
- (9) Matsuura, I.; Yoshida, K.; Mori, A. Chem. Lett. 1987, 535.
- (10) Morishige, H.; Tamaki, J.; Teraoka, Y.; Miura, N.; Yamazoe, N. Nippon Kagaku Kaishi 1989, 1983.
- (11) Ziolkowski, J.; Bordes, E.; Courtine, P. J. Catal. 1990, 122, 126
- (12) Igarashi, H.; Tsuji, K.; Okuhara, T.; Misono, M. J. Phys. Chem. 1993, 97, 7065
- (13) Okuhara, T.; Inumaru, K.; Misono, M. ACS Symp. Ser. 1993, 523. 156.
- (14) Abon, M.; Béré, K. E.; Tuel, A.; Delichere, P. J. Catal. 1995, 156.28.
- (15) Schuurman, Y.; Gleaves, J. T. Catal. Today 1997, 33, 25.
- (16) Haber, J.; Zazhigalov, V. A.; Stoch, J.; Bogutskaya, L. V.; Batcherikova, I. V. *Catal. Today* **1997**, *33*, 39.
 - (17) Bordes, E.; Courtine, P. J. Catal. 1979, 57, 236.
 (18) Varma, R. L.; Saraf, D. N. Ind. Eng. Chem. Prod. Res. Dev.
- 1979, 18, 7.
- (19) Hodnett, B. K.; Permanne, P.; Delmon, B. Appl. Catal. 1983, 6, 231.
- (20) Z.-Lin, Y.; Forissier, M.; Sneeden, R. P.; Védrine, J. C.; Volta, J. C. J. Catal. 1995, 145, 256.
- (21) Johnson, J. W.; Johnston, D. C.; Jacobson, A. J.; Brody, J. F. J. Am. Chem. Soc. 1984, 106, 8123.
 (22) Bordes, E.; Courtine, P. J. Solid State Chem. 1984, 55, 270.
- (23) Martin, A.; Lücke, B.; Wolf, G.-U.; Meisel, M. Catal. Lett. 1995, 33. 349.
- (24) Zhang, Y.; Martin, A.; Wolf, G.-U.; Rabe, S.; Worzala, H.; Meisel, M.; Witke, K. Chem. Mater. 1996, 8, 1135; Zhang, Y.; Meisel,
- M.; Martin, A.; Witke, K.; Brzezinka, K.-W. *Chem. Mater.* **1997**, *9*, 1086. (25) Berndt, H.; Büker, K.; Martin, A.; Brückner, A.; Lücke, B. J.
- Chem. Soc., Faraday Trans. 1995, 91, 725. (26) Benziger, J. B.; Guliants, V.; Sundaresan, S. Catal. Today 1997, 33. 49.
- (27) Miyake, T.; Doi, T. Appl. Catal. A: Gen. 1995, 131, 43.

followed by heat treatment at 403 K,^{1,3,5,10,12,25,26,29} (3) the preparation of VOPO₄·2H₂O followed by reduction with alcohols, 3,8,12,13,21,22,30 and (4) hydrothermal synthesis with V₂O₄ and H₃PO₄ at 773 K.³¹ Methods 1-3 consist of two steps and method 4 requires a high temperature of 773 K.

Here, we report the one-pot synthesis of highly crystalline VOHPO₄·0.5H₂O at 473 K and its successive transformation to $(VO)_2P_2O_7$ by using V metal not only as a V source but also as a reducing agent for V_2O_5 .

The reagents used were commercially obtained and used without further purification. The synthesis of VOHPO₄·0.5H₂O was carried out in a Teflon vessel as follows: 2.31 g of H₃PO₄ (85%) was added to an aqueous solution of cetyltrimethylammonium chloride (30 cm³, 0.66 mol·dm⁻³), followed by the addition of V metal (0.204 g, 4.00 \times 10 $^{-3}$ mol) and V_2O_5 (1.46 g, 8.00 \times 10 $^{-3}$ mol) or NaVO₃ (1.95 g, 1.60×10^{-2} mol), or only VOSO₄ (4.35 g, 2.00 \times 10⁻² mol) at room temperature. The resulting suspension was purged with Ar and then the Teflon vessel was moved to a stainless autoclave. The autoclave was kept at 473 K for 48 h. Finally, the solution was filtered and the resulting powder was washed with ca. 700 cm³ of water followed by evacuation at room temperature for 5 h. The yield was ca. 50% on a V basis. The BET surface area was 4 m²·g⁻¹. Samples a-c of VOHPO₄ \cdot 0.5H₂O were prepared according to methods 1–3, respectively, which were described in refs 5 and 12.

The powder X-ray diffraction (XRD) patterns were recorded on a powder X-ray diffractometer (Materials Analysis and Characterization, MXP³) by using Cu Ka radiation. The infrared spectra of KBr pellets were recorded on a Perkin Elmer Paragon 1000PC spectrometer. Thermogravimetric and differential themal analysis (TG/DTA) was carried out in a N₂ flow (10 cm³·min⁻¹) with Seiko Instruments TG/DTA 220. Transmission electron micrograph (TEM) and scanning electron micrograph (SEM) analyses were carried out with JEOL JEM-4000 FXII and JEOL TSM-T840, respectively. The elemental analysis and XRD, SEM, TG/DTA, and IR spectra of the prepared sample were consistent with the formation of pure VOHPO₄·0.5H₂O. Elemental analysis: calculated (found): V, 29.6 (29.5); P, 18.0 (18.0).

Figure 1a shows the XRD pattern of the sample prepared. All lines can be assigned to VOHPO₄·0.5H₂O with an orthorhombic structure (a = 7.434 Å, b = 9.620Å, c = 5.699 Å) and agreed well with those reported.^{3,12,21,31,32} Thus, a one-pot hydrothermal synthesis of VOHPO-0.5H₂O was achieved at a temperature as low as 473 K. The half-width of the signal at 15.5°, which corresponds to the (001) plane, was about 0.08 \pm 0.02° (2 θ). The thickness calculated by the XRD data is $0.07-0.15 \ \mu m$ in the [001] direction.

The XRD pattern of the sample prepared from VOSO₄ instead of V₂O₅ showed the formation of single phase of VOHPO₄ \cdot 0.5H₂O, but the intensity of the (001) reflection was one-twentieth of that from V_2O_5 . No

- (29) Otake, M. JP Patent (Japan Kokai Tokkyo Koho), 1981, 45815. (30) Sananés-Schulz, M. T.; Abdelouahab, F. B.; Hutchings, G. J.; Volta, J. C. J. Catal. 1996, 163, 346.
- (31) Torardi, C. C.; Calabrese, J. C. Inorg. Chem. 1984, 23, 1308. (32) Leonowicz, M. E.; Johnson, J. W.; Brody, J. F.; Shannon, H.
 F., Jr.; Newsam, J. M. J. Solid State Chem. 1985, 56, 370.

⁽²⁸⁾ Granados, M. L.; Conesa, J. C.; Fernández-García, M. J. Catal. 1993, 141, 671.

Figure 1. XRD patterns of as-prepared VOHPO₄ \cdot 0.5H₂O and (VO)₂P₂O₇: (a, upper) VOHPO₄ \cdot 0.5H₂O, (b, lower) (VO)₂P₂O₇.

diffraction peaks due to VOHPO₄·0.5H₂O were observed when NaVO₃ was used instead of V₂O₅. In addition, the intensity of (001) reflection in Figure 1 was a factor of 3–12 higher than those of samples a–c. The strongest XRD peak intensities were obtained at 473 K, for the range of the synthesis temperatures of 413–523 K and by using cetyltrimethylammonium chloride among cetyltrimethylammonium chloride, octyltrimethylammonium bromide, and tetrabutylammonium chloride.

Figure 2a shows the SEM micrograph. VOHPO₄· 0.5H₂O mainly consisted of platelet crystals with the size of $15-30 \ \mu\text{m}$ and a thickness of $0.1-0.3 \ \mu\text{m}$. The values of the size and thickness were $10-30 \ \text{and} \ 1-2$ times larger than those of samples a-c, respectively. Accordingly, the area ratio of the (001) plane to the (220), (020), ($\overline{3}10$), (220), (020), and ($3\overline{1}0$) side planes of as-prepared VOHPO₄·0.5H₂O was 5-30 times larger than those of samples a-c. When the electron beam was incident to VOHPO₄·0.5H₂O along [001], which is the vertical to the basal plane, spots were obtained as shown in Figure 3. The transmission electron diffraction pattern was the same as those reported,^{8,22} and the orthorhombic cell parameters ($a = 7.43 \ \text{Å}$, $b = 9.62 \ \text{Å}$) agreed well with those obtained from Figure 1.

The IR spectrum showed the 1198 cm⁻¹ ($\nu_{as}(PO_3)$), 1134 cm⁻¹ ($\delta_{ip}(P-OH)$), 1104 cm⁻¹ ($\nu_{as}(PO_3)$), 1052 cm⁻¹ ($\nu_{as}(PO_3)$), 978 cm⁻¹ ($\nu(V=O)$), 931 cm⁻¹ ($\nu(P-OH)$), 684 cm⁻¹ (ω (coordinated H₂O)), 643 cm⁻¹ ($\delta_{oop}(P-OH)$), 548 cm⁻¹ (δ (OPO)), 532 cm⁻¹ (δ (OPO)), 482 cm⁻¹ (δ (OPO), and 417 cm⁻¹ (δ (OPO)) bands, which are characteristic of the VOHPO₄·0.5H₂O structure.^{7,28}

A sharp weight loss was observed with an endothermic peak at around 740 K for the TG/DTA analysis. The total weight loss was 10.5 wt %, which agreed well with the calculated value of 10.5 wt % for the transformation shown by eq 1. The IR spectrum of the sample used for

$$2\text{VOHPO}_4 \cdot 0.5\text{H}_2\text{O} \rightarrow (\text{VO})_2\text{P}_2\text{O}_7 + 2\text{H}_2\text{O} \quad (1)$$

the TG/DTA measurement agreed well with that of $(VO)_2P_2O_7$. The formation of pure $(VO)_2O_2O_7$ was confirmed by the XRD pattern shown in Figure 1b as well, supporting the occurrence of the transformation. The BET surface area of $(VO)_2P_2O_7$ was $12 \text{ m}^2 \cdot \text{g}^{-1}$ and the $(VO)_2P_2O_7$ mainly consisted of platelet crystals as shown in Figure 2b. It has been reported that the

20 µ m

 $10 \ \mu \,\mathrm{m}$

Figure 2. Scanning electron micrographs of as-prepared VOHPO_4 \cdot 0.5H₂O and (VO)₂P₂O₇: (a) VOHPO₄ \cdot 0.5H₂O, (b) (VO)₂P₂O₇.

Figure 3. Transmission electron diffraction pattern of asprepared VOHPO $_4$ ·0.5H $_2$ O.

catalytic performance is influenced by the morphology of $(VO)_2P_2O_7$.^{7,8,12}

In summary, the present results demonstrated the one-pot synthesis of $VOHPO_4 \cdot 0.5H_2O$ with a high growth of the (001) plane.

Acknowledgment. This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan.

CM9705092