One-Pot Synthesis of VOHPO4'**0.5H2O with High Growth of the (001) Plane: An Important Catalyst Precursor of (VO)₂P₂O₇**

Noritaka Mizuno,* Hiroshi Hatayama, and Makoto Misono

> *Department of Applied Chemistry, Graduate School of Engineering The University of Tokyo Hongo, Bunkyo-ku, Tokyo 113, Japan*

Received July 17, 1997 Revised Manuscript Received October 2, 1997

 $VOHPO₄·0.5H₂O$ is a good catalyst precursor of $(VO)₂P₂O₇$, which is an active phase or active component for the industrialized oxidation of *n*-butane into maleic anhydride.¹⁻²⁰ In addition, the (100) plane of $(VO)_2P_2O_7$, which is an active plane for the selective oxidation,2,3,7,8,11,13 originates from the (001) plane of VO- $HPO_4 \cdot 0.5H_2O^{8,21,22}$ Therefore, the easy synthesis of VOHPO₄ \cdot 0.5H₂O with a high growth of the (001) plane is interesting from the standpoint of catalyst preparation. VOHPO₄ \cdot 0.5H₂O is also a catalyst precursor of $(NH_4)_2$ [(VO)₃(P₂O₇)₂] active for ammoxidation.²³⁻²⁵

To date, four methods have been reported for the preparation of $VOHPO₄·0.5H₂O$: (1) the reduction of V_2O_5 with alcohols followed by reaction with H_3 - \overline{PO}_{4} , $1-4,8,12,14-16,21,22,26-28$ (2) the reaction of a mixture of V_2O_5 and H_3PO_4 with NH₂OH·HCl or oxalic acid

(1) Hodnett, B. K. *Catal*. *Rev*. *Sci*. *Eng*. **1985**, *27*, 373.

- (2) Centi, G.; Trifiro, F.; Ebner, J. R.; Franchetti, V. M. *Chem*. *Rev*. **1988**, *88*, 55.
	- (3) Bordes, E. *Catal*. *Today* **1987**, *1*, 499.
-
- (4) Hutchings, G. J. *Appl*. *Catal*. **1991**, *72*, 1. (5) Shimoda, T.; Okuhara, T.; Misono, M. *Bull*. *Chem*. *Soc*. *Jpn*. **1985**, *58*, 2163.
- (6) Moser, T. P.; Schrader, G. L. *J*. *Catal*. **1985**, *92*, 216.
- (7) Busca, G.; Cavani, F.; Centi, G.; Trifiro, F. *J*. *Catal*. **1986**, *99*, 400.
- (8) Horowitz, H. S.; Blackstone, C. M.; Sleight, A. W.; Teufer, G. *Appl*. *Catal*. **1988**, *38*, 193.
- (9) Matsuura, I.; Yoshida, K.; Mori, A. *Chem*. *Lett*. **1987**, 535.
- (10) Morishige, H.; Tamaki, J.; Teraoka, Y.; Miura, N.; Yamazoe, N. *Nippon Kagaku Kaishi* **1989**, 1983.
- (11) Ziolkowski, J.; Bordes, E.; Courtine, P. *J*. *Catal*. **1990**, *122*, 126.
- (12) Igarashi, H.; Tsuji, K.; Okuhara, T.; Misono, M. *J*. *Phys*. *Chem*. **1993**, *97*, 7065.
- (13) Okuhara, T.; Inumaru, K.; Misono, M. *ACS Symp*. *Ser*. **1993**, *523*, 156.
- (14) Abon, M.; Be´re´, K. E.; Tuel, A.; Delichere, P. *J*. *Catal*. **1995**, *156*, 28.
- (15) Schuurman, Y.; Gleaves, J. T. *Catal*. *Today* **1997**, *33*, 25.
- (16) Haber, J.; Zazhigalov, V. A.; Stoch, J.; Bogutskaya, L. V.; Batcherikova, I. V. *Catal*. *Today* **1997**, *33*, 39.
- (17) Bordes, E.; Courtine, P. *J*. *Catal*. **1979**, *57*, 236.
- (18) Varma, R. L.; Saraf, D. N. *Ind*. *Eng*. *Chem*. *Prod*. *Res*. *Dev*. **1979**, *18*, 7.
- (19) Hodnett, B. K.; Permanne, P.; Delmon, B. *Appl*. *Catal*. **1983**, *6*, 231.
- (20) Z.-Lin, Y.; Forissier, M.; Sneeden, R. P.; Védrine, J. C.; Volta, J. C. *J*. *Catal*. **1995**, *145*, 256.
- (21) Johnson, J. W.; Johnston, D. C.; Jacobson, A. J.; Brody, J. F.
- J. Am. Chem. Soc. **1984**, 106, 8123.
(22) Bordes, E.; Courtine, P. J. Solid State Chem. **1984**, 55, 270.
(23) Martin, A.; Lücke, B.; Wolf, G.-U.; Meisel, M. Catal. Lett. **1995**, *33*, 349.
- (24) Zhang, Y.; Martin, A.; Wolf, G.-U.; Rabe, S.; Worzala, H.; Meisel, M.; Witke, K. *Chem*. *Mater*. **1996**, *8*, 1135; Zhang, Y.; Meisel,
- M.; Martin, A.; Witke, K.; Brzezinka, K.-W. *Chem*. *Mater*. **1997**, *9*, 1086. (25) Berndt, H.; Büker, K.; Martin, A.; Brückner, A.; Lücke, B. *J.*
- *Chem*. *Soc*.*, Faraday Trans*. **1995**, *91*, 725. (26) Benziger, J. B.; Guliants, V.; Sundaresan, S. *Catal*. *Today* **1997**, *33*, 49.
- (27) Miyake, T.; Doi, T. *Appl*. *Catal*. *A: Gen*. **1995**, *131*, 43.

followed by heat treatment at 403 K, 1,3,5,10,12,25,26,29 (3) the preparation of $VOPO₄·2H₂O$ followed by reduction with alcohols, 3,8,12,13,21,22,30 and (4) hydrothermal synthesis with V_2O_4 and H_3PO_4 at 773 K.³¹ Methods 1-3 consist of two steps and method 4 requires a high temperature of 773 K.

Here, we report the one-pot synthesis of highly crystalline VOHPO₄ \cdot 0.5H₂O at 473 K and its successive transformation to $(VO)_2P_2O_7$ by using V metal not only as a V source but also as a reducing agent for V_2O_5 .

The reagents used were commercially obtained and used without further purification. The synthesis of VOHPO₄ \cdot 0.5H₂O was carried out in a Teflon vessel as follows: 2.31 g of H_3PO_4 (85%) was added to an aqueous solution of cetyltrimethylammonium chloride (30 cm3, 0.66 mol dm^{-3} , followed by the addition of V metal $(0.204 \text{ g}, 4.00 \times 10^{-3} \text{ mol})$ and V_2O_5 $(1.46 \text{ g}, 8.00 \times 10^{-3} \text{ m})$ mol) or NaVO₃ (1.95 g, 1.60×10^{-2} mol), or only VOSO₄ (4.35 g, 2.00 \times 10⁻² mol) at room temperature. The resulting suspension was purged with Ar and then the Teflon vessel was moved to a stainless autoclave. The autoclave was kept at 473 K for 48 h. Finally, the solution was filtered and the resulting powder was washed with ca. 700 cm³ of water followed by evacuation at room temperature for 5 h. The yield was ca. 50% on a V basis. The BET surface area was $4 \text{ m}^2 \cdot \text{g}^{-1}$. Samples a-c of VOHPO₄ \cdot 0.5H₂O were prepared according to methods $1-3$, respectively, which were described in refs 5 and 12.

The powder X-ray diffraction (XRD) patterns were recorded on a powder X-ray diffractometer (Materials Analysis and Characterization, MXP³) by using Cu $K\alpha$ radiation. The infrared spectra of KBr pellets were recorded on a Perkin Elmer Paragon 1000PC spectrometer. Thermogravimetric and differential themal analysis (TG/DTA) was carried out in a N_2 flow (10 cm³·min⁻¹) with Seiko Instruments TG/DTA 220. Transmission electron micrograph (TEM) and scanning electron micrograph (SEM) analyses were carried out with JEOL JEM-4000 FXII and JEOL TSM-T840, respectively. The elemental analysis and XRD, SEM, TG/DTA, and IR spectra of the prepared sample were consistent with the formation of pure $VOHPO₄·0.5H₂O$. Elemental analysis: calculated (found): V, 29.6 (29.5); P, 18.0 (18.0).

Figure 1a shows the XRD pattern of the sample prepared. All lines can be assigned to VOHPO4.0.5H₂O with an orthorhombic structure ($a = 7.434$ Å, $b = 9.620$ Å, $c = 5.699$ Å) and agreed well with those reported.3,12,21,31,32 Thus, a one-pot hydrothermal synthesis of VOHPO[.]0.5H₂O was achieved at a temperature as low as 473 K. The half-width of the signal at 15.5°, which corresponds to the (001) plane, was about 0.08 \pm 0.02° (2*θ*). The thickness calculated by the XRD data is $0.07-0.15 \mu m$ in the [001] direction.

The XRD pattern of the sample prepared from $VOSO₄$ instead of V_2O_5 showed the formation of single phase of VOHPO₄ \cdot 0.5H₂O, but the intensity of the (001) reflection was one-twentieth of that from V_2O_5 . No

- (29) Otake, M. JP Patent (Japan Kokai Tokkyo Koho), 1981, 45815.
(30) Sananés-Schulz, M. T.; Abdelouahab, F. B.; Hutchings, G. J.; Volta, J. C. *J*. *Catal*. **1996**, *163*, 346.
- (31) Torardi, C. C.; Calabrese, J. C. *Inorg*. *Chem*. **1984**, *23*, 1308. (32) Leonowicz, M. E.; Johnson, J. W.; Brody, J. F.; Shannon, H.
- F., Jr.; Newsam, J. M. *J*. *Solid State Chem*. **1985**, *56*, 370.

⁽²⁸⁾ Granados, M. L.; Conesa, J. C.; Ferna´ndez-Garcı´a, M. *J*. *Catal*. **1993**, *141*, 671.

Figure 1. XRD patterns of as-prepared VOHPO₄.0.5H₂O and $(VO)_2P_2O_7$: (a, upper) VOHPO₄.0.5H₂O, (b, lower) $(VO)_2P_2O_7$.

diffraction peaks due to $VOHPO₄·0.5H₂O$ were observed when $NaVO₃$ was used instead of $V₂O₅$. In addition, the intensity of (001) reflection in Figure 1 was a factor of $3-12$ higher than those of samples a-c. The strongest XRD peak intensities were obtained at 473 K, for the range of the synthesis temperatures of 413-523 K and by using cetyltrimethylammonium chloride among cetyltrimethylammonium chloride, octyltrimethylammonium bromide, and tetrabutylammonium chloride.

Figure 2a shows the SEM micrograph. VOHPO4 \cdot $0.5H₂O$ mainly consisted of platelet crystals with the size of $15-30 \ \mu m$ and a thickness of $0.1-0.3 \ \mu m$. The values of the size and thickness were $10-30$ and $1-2$ times larger than those of samples $a-c$, respectively. Accordingly, the area ratio of the (001) plane to the (220) , (020) , (310) , (220) , (020) , and (310) side planes of as-prepared VOHPO₄ \cdot 0.5H₂O was 5-30 times larger than those of samples $a-c$. When the electron beam was incident to $VOHPO₄·0.5H₂O$ along [001], which is the vertical to the basal plane, spots were obtained as shown in Figure 3. The transmission electron diffraction pattern was the same as those reported, $8,22$ and the orthorhombic cell parameters ($a = 7.43$ Å, $b = 9.62$ Å) agreed well with those obtained from Figure 1.

The IR spectrum showed the 1198 cm⁻¹ ($v_{as}(\text{PO}_3)$), 1134 cm-¹ (*δ*ip(P-OH)), 1104 cm-¹ (*ν*as(PO3)), 1052 cm-¹ (*ν*_{as}(PO₃)), 978 cm⁻¹ (*ν*(V=O)), 931 cm⁻¹ (*ν*(P-OH)), 684 cm-¹ (*ω*(coordinated H2O)), 643 cm-¹ (*δ*oop(P-OH)), 548 cm-¹ (*δ*(OPO)), 532 cm-¹ (*δ*(OPO)), 482 cm-¹ (*δ*(OPO), and 417 cm⁻¹ (δ (OPO)) bands, which are characteristic of the VOHPO₄ \cdot 0.5H₂O structure.^{7,28}

A sharp weight loss was observed with an endothermic peak at around 740 K for the TG/DTA analysis. The total weight loss was 10.5 wt %, which agreed well with the calculated value of 10.5 wt % for the transformation shown by eq 1. The IR spectrum of the sample used for

$$
2VOHPO4·0.5H2O \rightarrow (VO)2P2O7 + 2H2O (1)
$$

the TG/DTA measurement agreed well with that of $(VO)_2P_2O_7$. The formation of pure $(VO)_2O_2O_7$ was confirmed by the XRD pattern shown in Figure 1b as well, supporting the occurrence of the transformation. The BET surface area of $({\rm VO})_2{\rm P}_2{\rm O}_7$ was 12 m²·g⁻¹ and the $(VO)_2P_2O_7$ mainly consisted of platelet crystals as shown in Figure 2b. It has been reported that the

 $20~\mu$ m

10 μ m

Figure 2. Scanning electron micrographs of as-prepared VOHPO₄ \cdot 0.5H₂O and (VO)₂P₂O₇: (a) VOHPO₄ \cdot 0.5H₂O, (b) $(VO)₂P₂O₇$.

Figure 3. Transmission electron diffraction pattern of asprepared $VOHPO₄·0.5H₂O$.

catalytic performance is influenced by the morphology of $({\rm VO})_2{\rm P}_2{\rm O}_7$.^{7,8,12}

In summary, the present results demonstrated the one-pot synthesis of VOHPO₄.0.5H₂O with a high growth of the (001) plane.

Acknowledgment. This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan.

CM9705092